Presentation of recommendations and tool to help Ports to assess impacts of quay protection

EFFORTS project - International Conference
22nd and 23rd September 2009, Le Havre, France

L. Walle - TLA
Presentation overview

• Corrosion issues
• Rehabilitation & protection techniques
 – Rehabilitation
 – Coatings
 – Sacrificial anode Cathodic protection
 – Impressed current Cathodic protection
• Assessment of techniques
• Tool
• Recommendations
Corrosion issues – elements

- Elements subjects to corrosion:
 - Steel structures: Piles, Sheet piles
 - Reinforced or pre-stressed concrete (reinforcing steel): piles, beams, quays…
 - Mobile parts: gates…
Corrosion issues – zones & pathologies

- Pathologies:
 - Atmospheric zone: general corrosion (oxide layer on whole surface)
 - z3: localized corrosion (craters, cracks, holes)
 - z2: combination of atmospheric corrosion and erosion, abrasion, fouling, ...
 - LAT: differential aeration cell
 - Mud line: bacterial corrosion
 - Any zone: galvanic corrosion
Corrosion issues – different forms

Group I: Identifiable by visual inspection
- Uniform Corrosion
- Pitting
- Crevice Corrosion
- Galvanic Corrosion

Group II: Identifiable with special inspection tools
- Erosion
- Cavitation
- Fretting
- Intergranular

Group III: Identifiable by microscopic examination
- Exfoliation
- De-Alloying
- Stress Corrosion Cracking
- Corrosion Fatigue
Rehabilitation techniques

• Concrete structure with metallic frames
 – Reinforcement with shotcrete
 – Reinforcement with metal sheets
 – Repair with injection of epoxy resins
 – Realkalisation, dechlorination

• Metallic elements
 – Dual shell system
 – Pile shielding
Protection techniques - coatings

- Most commonly used method, cost being the key factor
- Number of concepts, 2 main families:
 - Barrier protection (physical: coatings)
 - Galvanic protection (electrochemical barrier…)
- Organic coating: 15 to 20 ingredients, typical 3 layers 300µm total thickness (primer, barrier, finish)
- Metallic coating by electroplating, hot dipping,… using Cadmium, chromium, nickel, aluminium or zinc
- Inhibitor, chemical substance (added to primer), many types
Protection techniques - Sacrificial anode Cathodic protection
Protection techniques – Impressed current CP
WP 2.2.2 – Water quality in port

Assessment of techniques

<table>
<thead>
<tr>
<th></th>
<th>Coating</th>
<th>Electrochemical protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organic coating</td>
<td>Metallic coating</td>
</tr>
<tr>
<td>Application domain</td>
<td>Sheet pile, pile, moving element</td>
<td>Sheet pile, pile, moving element</td>
</tr>
<tr>
<td>Main advantage</td>
<td>Preventive</td>
<td>Curative</td>
</tr>
<tr>
<td>Risks / Limitations</td>
<td>Adherence, quality of painting</td>
<td>Galvanization, non uniform corrosion</td>
</tr>
<tr>
<td>Duration</td>
<td>~5 y</td>
<td>~10 y</td>
</tr>
<tr>
<td>Control mean</td>
<td>Aspect, presence of mini-holes</td>
<td>Welding state, corrosion process</td>
</tr>
<tr>
<td>Technical</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Ease of application / installation</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Exploitation</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Maintenance constraints</td>
<td>Duration 5 years max</td>
<td>Duration 5 years max</td>
</tr>
<tr>
<td>Environmental</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Toxicity</td>
<td>- Caution to components in painting</td>
<td>Nature of metal n</td>
</tr>
<tr>
<td>Economical</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Installation & investment</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Exploitation</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Maintenance</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>
Corrosion quay protection decision tool

Infrastructure considerations
- Length of berth: 500 m
- Width of berth: 20 m
- Number of piles: 1112 (approx.)
- Draught: 6 m
- Piles inter space: 3 m
- Basin dredging frequency: 2 / year
- Steel sheetpiles presence:

Environmental considerations
- Water pH (1 to 14: acidic to basic): 7.5 (7: neutral)
- Chemical industries neighborhood:

Overall considerations
- Most important factor(s):
 -
- Estimation: 15 years

Given your data, the best solution is: **Sacrificial Anode: Al**

Technical
- Installation
- Exploitation
- Maintenance

Environmental
- Risk
- Toxicity

Economical
- Installation
- Exploitation
- Maintenance

Overall results

Comparison of techniques

<table>
<thead>
<tr>
<th>Coating</th>
<th>Orga</th>
<th>Metal (Zn)</th>
<th>Zn</th>
<th>Al</th>
<th>SA</th>
<th>ICCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Result

<table>
<thead>
<tr>
<th>Coating</th>
<th>Orga</th>
<th>Metal (Zn)</th>
<th>Zn</th>
<th>Al</th>
<th>SA</th>
<th>ICCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Result

<table>
<thead>
<tr>
<th>Coating</th>
<th>Orga</th>
<th>Metal (Zn)</th>
<th>Zn</th>
<th>Al</th>
<th>SA</th>
<th>ICCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Economical Result

<table>
<thead>
<tr>
<th>Coating</th>
<th>Orga</th>
<th>Metal (Zn)</th>
<th>Zn</th>
<th>Al</th>
<th>SA</th>
<th>ICCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most important factor(s):
- Press
- Environment
- Reduced maintenance

Price
- Environment
- Reduced maintenance

Environment
- Reduced maintenance: 15
Recommendations

- Plan protection when building installation
- To protect, think about technical feasibility, costs, and environment
- **For a better choice, take into account:**
 - *Dimensions of basin*
 - *Water draught*
 - *Dredging frequency*
 - *Sediments use*
 - *Neighborhood*
 - *Water pH*
 - *Horizon of depreciation*
 - *Main factor considered (technical, environmental, economical)*